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Abstract. The aim of this work is to find a simple analytic model to explain some principal aspects of
the behavior of surface states in correlated electron systems. We start from the analytic expression for the
Green function of the semi-infinite tight binding linear chain. This Green function in case of modification
of the center of gravity of the first atom and the change in coupling between the first and the second atom
is evaluated as an exact analytic expression. Conditions for the existence and classification of surface states
are given. The spectral weight of surface states and the local density of states are evaluated. The method
is applied to a s.c. (100) surface of a local moment crystal. Conditions for the existence of surface states
are derived and their locations in the Brillouin zone are predicted. It is shown that it is possible to include
correlation effects within the framework of the discussed model. The comparison with former numerical
results is performed.

PACS. 75.70.-i Magnetic films and multilayers – 73.20.At Surface states, band structure, electron density
of states – 75.50.Pp Magnetic semiconductors

1 Introduction

Surfaces are the boundaries between different phases of
matter and are the reason for many interesting phenom-
ena. We are in particular interested in the influence of the
surface on the electronic structure.

The behavior of the surface states in correlated lo-
cal moment films [1,2] was the motivation for this arti-
cle which was announced in [1] as to be published. This
work provides the key to understand the general features
in the spectra of the surfaces of correlated electron sys-
tems. Some known aspects which are important for the
understanding are used to develop an analytical descrip-
tion for surface states showing the conditions for existence,
position in energy as well as spectral weight of a surface
state on a given point in the two dimensional Brillouin
zone. That shell help to interpret the results of more com-
plex calculations [1,2].

In 1932 Tamm indicates for the first time the existence
of specific electron states, later called “Tamm states”, lo-
calized near the crystal surface. His paper “On the pos-
sible bound states of electrons on a crystal surface” [3]
is the starting point for the Surface Science. In the fol-
lowing years the theoretical research activity was intense
(Fowler [4], Sokolov [5], Maue [6] and Goodwin [7]). In
1939 Shockley [8] explained how surface states originate
from the atomic levels, as the crystal is built up by
lowering the lattice constant from infinity to a finite value.
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After Shockley’s publication, the general trend was in lit-
erature to distinguish between Shockley and Tamm sur-
face states. Shockley states occur within hybridizational
band gaps far from the band edges and require a multi
band model. Tamm states were considered as completely
originating from the change in the potential in the outer-
most crystal cell and they are located near by the band
edges. For completeness the image states should men-
tioned which are located mainly outside the crystal. A
good introduction to the theory of surface states is given
in the review article by Davison and Levine [9] and in the
later book by Davison and Strȩślicka [10].

In the next section the Hamiltonian for the semi-
infinite crystal is introduced, in Section 3 the model of
the semi-infinite chain is solved using a Green function
approach. The modification of the center of gravity of the
first atom and the change in coupling between the first
and the second atom is taken into account. We get exact
results for all elements of the Green function, the position
in energy and spectral weight of surface states for each
site.

The results are then applied to a s.c. (100) surface of
a local moment crystal in Section 4. We map for each
wave vector on the chain model. The spectral density is
discussed for the free surface.

Finally, in Section 5 the interplay of surface states and
the spin exchange correlation in a local moment film is
shown. We compare the results of our analytic model with
the numerical results [1].
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2 Hamiltonian of the surface of semi-infinite
crystals

The Hamiltonian of the semi-infinite extended crystal can
be expressed by

H =
∑
ij

∞∑
α,β=1

hαβij , (1)

where α, β = 1, 2, . . . are the layer indices and i, j number
the sites within the layers. Because of the two dimensional
translational invariance we perform the Fourier transfor-
mation,

H =
∑
k

∞∑
α,β=1

hαβ(k), (2)

where k is the 2-dimensional wave vector and

hαβ(k) =
1
N

∑
ij

eik(Ri−Rj)hαβij , (3)

Ri and Rj are 2-dimensional lattice vectors. For sim-
plicity, we restrict ourselves to the tight binding ap-
proximation and to the surfaces for which the resulting
2-dimensional wave vector dependent Hamiltonian h(k)
becomes tridiagonal (surfaces for which the next neighbors
are in the same or in the next layer, e.g. sc(100), sc(110),
sc(111), bcc(100), bcc(100), bcc(110), fcc(100), fcc(111)).
In case of uniform hopping between the next neighbors
the dispersions parallel and perpendicular to the surface
are given by

γ||(k) =
Riα,Rjβ n.n.; α=β∑

j

e−ik(Ri−Rj), (4)

γ±⊥(k) =
Riα,Rjβ n.n.; α=β±1∑

j

e±ik(Ri−Rj). (5)

For all cubic crystals γ‖ is real but γ±⊥ can be complex.
In case of sc(100), sc(110), bcc(100), bcc(100), bcc(110),
and fcc(100) also the perpendicular dispersion is real
(γ⊥ = γ+

⊥ = γ−⊥). The perpendicular dispersion consid-
ering the next neighbors in the layer below and above
are given by γ−⊥ and by γ+

⊥ respectively. γ−⊥ and γ+
⊥ are

conjugate complex to each other. The expressions for the
various geometries can be found in Appendix A. Now the
Hamiltonian can be interpreted as an ensemble of semi
infinite linear chains for each k-point

H =
∑
k

h(k). (6)

In general the k-dependent Hamiltonian is hermitian but
not symmetric. However, if we are interested in the diag-
onal elements of the Green function only, the hermitian
Hamiltonian and the symmetric Hamiltonian formed by
substituting the off-diagonal elements by its absolute value
yield the same result [11]. In that sense it is no limitation
that the approach presented in the next Section 3 uses the
symmetric input equations (7, 16).

3 Green function of semi-infinite linear
atomic chain

3.1 Ideal linear chain

The Hamilton operator of an atomic chain in tight-binding
approximation is given by

h0 =


α −γ 0 · · ·

−γ α −γ . . .

0 −γ α
. . .

...
. . . . . . . . .

 , (7)

where α is the center of gravity and 2γ is the total band-
width of the s-band of the atoms of the chain. Furthermore
the Green function of the system is defined by

(h0 −EI) G0(E) = −} I. (8)

We measure the energy E in units of bandwidth i.e. we
introduce the “reduced” energy

t =
E − α

2γ
· (9)

Using the substitution for the reduced energy

−t = cos θ, (10)

where θ ∈ C, the elements of the Green function matrix
of ideal atomic tight binding chain can be given in an
analytical form as presented in Appendix B (Eqs. (B.1-
B.4))

(
G0
)
kl

= g0
kl = −}

γ

ei(k+l)θ − ei|k−l|θ

2i sin θ
(11)

where θ = arccos(−t). The following identities hold:

g0
kl = g0

lk, (12)

g0
21

2 − g0
11 g

0
22 = g0

21}/γ. (13)

3.2 Perturbation and defect matrix method

Now we would like to include into our model chain a
perturbation induced by the cut off of the chain which
is expressed by a displacement of the center of gravity
of the band at the first atom α → α′ and by a change
of coupling between first and second atom γ → γ′. The
Hamiltonian h differs in the 3 elements (h)11 = α′ and
(h)12 = (h)21 = γ′ from h0 only. The Green function for
this generalized problem is defined by

(h−E I) G(E) = −} I. (14)

In order to find the solution we use the method of de-
fect matrix, proposed and used by Maradudin [12] and
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Pollmann [13], i.e. we split h into one matrix represent-
ing the ideal semi infinite chain and the rest δh, which is
called the “defect matrix”:

h = h0 + δh. (15)

The defect matrix is rather trivial and except the three
elements

h1 = (δh)11 = α′ − α, h2 = (δh)12 = (δh)21 = −γ′ + γ
(16)

all elements are equal zero. We combine equations (8, 14)
to the Dyson’s equation [14] and we obtain

G(E) =
[
I− 1

}
G0(E)δh

]−1

G0(E). (17)

The matrix inversion of

A = I− 1
}

G0 δh (18)

is simple and straight-forwardly done in Appendix C. The
multiplication of A−1 (Eq. (C.2)) with the Green func-
tion of the ideal problem yields all elements of the Green
function of the semi-infinite perturbed linear chain

G1j =
1
λ

(
a22 g

0
1j − a12 g

0
2j

)
,

G2j =
1
λ

(
−a21 g

0
1j + a11 g

0
2j

)
, (19)

Gij =
1
λ

(∣∣∣a21 ai1
a22 ai2

∣∣∣ g0
1j −

∣∣∣a11 ai1
a12 ai2

∣∣∣ g0
2j

)
+ g0

ij for i ≥ 3,

where

ai1 = δi1 − (g0
i1h1 + g0

i2h2)/},
ai2 = δi2 − g0

i1h2/}
(20)

and

λ =

∣∣∣∣∣a11 a21

a12 a22

∣∣∣∣∣ = detA. (21)

Our result is the same as found in [15] (Eq. (27)) and [16]
(Eq. (2.16)) if we restrict ourselves to the diagonal ele-
ments of the Greens function and the simpler case of only
changed center of gravity of the first atom. The expres-
sions of the Green function for the first and second atom
of the chain are especially simple

G11 =
1
λ
g0

11, (22)

G22 =
1
λ

(
g0

22 +
h1

γ
g0

21

)
. (23)

This can be obtained by equations (12, 13).

3.3 Existence of surface states

In this subsection we are interested in the surface states
which may occur dependent on the shift of center of grav-
ity of the band of the first atom and on the change of the
coupling between first and second atom (Tamm states [3]).
The diagonal elements of the Green function can be writ-
ten as

Gnn(t) =
1
λ
Rn(t) + Sn(t), (24)

where Rn(t) and Sn(t) are functions built up from g0
ij

which contain only poles tn ∈ [−1, 1] included in the origi-
nal Green function of ideal semi-infinite linear chain.Rn(t)
is given by

R1 = g0
11,

R2 = g0
22 +

h1

γ
g0

21, (25)

Rn≥3 =
∣∣∣a21 an1
a22 an2

∣∣∣ g0
1j −

∣∣∣a11 an1
a12 an2

∣∣∣ g0
2j.

The exact shape of Sn(t) which can be found by subtrac-
tion of equation (25) from equation (19) is of no interest.
We are now looking for poles which have an reduced en-
ergy outside the bulk band |ti| > 1. The only reason for
surface states are poles introduced by the roots of the de-
nominator (21)

λ(t) = }2 − }g0
11h1 − 2}g0

21h2 +
(
g0

21
2 − g0

11g
0
22

)
h2

2 = 0.

(26)

If we use the identities (13, 12) only the elements g0
11 and

g0
21 of the Green function G0 occur in equation (26). Due

to equation (11) they can be expressed by

z = e−iθ (27)

as

g0
11 = −}

γ
z−1 and g0

21 = −}
γ
z−2 . (28)

The connection between the reduced energy t and the vari-
able z via equations (10, 27) can be written as

−t = cos θ = 1
2

(
z−1 + z

)
. (29)

Furthermore it is convenient to give the elements of the
defect matrix in units of the bandwidth

h̃1 = h1/2γ and h̃2 = h2/γ. (30)

Now equation (26) yields

λ(z) =
}2

z2

(
z2 + 2zh̃1 + 2h̃2 − h̃2

2

)
= 0. (31)

Two properties of a physical solution of equation (31)
z = exp(−iθ) are demanded. First the reduced energy
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Table 1. Classification of solutions for z.

type of solution root reduced energy

bulk states |z| = 1 −1 ≤ t ≤ 1

lower surface states z > 1 t < −1

upper surface states z < −1 t > 1

asymptotic divergent −1 < z < 1 |t| > 1

t = − cos θ has to be real, second the solution has to pos-
sess the correct asymptotic behavior. In a sufficiently large
distance from the surface (n,m� 1) the Green functions
of the ideal and the perturbed chain are equal. If we fix m
and if we assume n ≥ m we find because of equation (11)
that

Gnm ∼ einθ (n > m� 1). (32)

Bulk states are obviously obtained if θ = ka ∈ R, where k
is the wave vector and a is the lattice constant. The Green
function is

|Gnm| ∼ |einka| = 1 (33)

uniformly distributed because of equation (32). The solu-
tion for an electron is a plane wave.

Surface states satisfy the first condition using θ = σ+
iτ ∈ C, where σ, τ ∈ R. A real reduced energy

t = − cos θ = − cosσ cosh τ + i sinσ sinh τ (34)

can be obtained either with σ = 0 or σ = π. The absolute
value of the Green function sufficiently far from the surface
is given by

|Gnm| ∼ e−nτ . (35)

To assure the correct asymptotic behavior we have to
choose τ > 0.

The solution θ = iτ results in a surface state with an
reduced energy t = − cosh τ < −1 below the bulk band
and there is no phase shift between neighboring atoms. We
call it lower surface state in the following. It exponentially
goes to zero from the surface into the bulk.

The other solution θ = π+ iτ we call an upper surface
state because there is an phase shift π between neighbor-
ing atoms. The reduced energy of this state t = cosh τ > 1
is located above the bulk band. It also goes to zero from
the surface into the bulk.

The results are summarized in the Table 1. The surface
states we are interested in are qualified by |z| > 1 and z ∈
R. In case of a vanishing defect matrix (h̃1 = h̃2 = 0) we
have no solution for surface states. If h̃2 = 0 and h̃1 6= 0,
one surface state is possible

z1 = −2h̃1, (36)

otherwise up to two surface states can exist

z1,2 = −h̃1 ±
√
h̃2

1 + h̃2
2 − 2h̃2. (37)
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Fig. 1. Phase diagram of surface states for shifts of center
of gravity h̃1 ∈ (−1.1, 1.1) and change of hopping between
first and second atom h̃2 ∈ (−3, 1). The solid lines show the
reduced energies of surface states above the bulk band. The
dashed lines show the reduced energies below the bulk band.
There are four regions: no surface states (either no real
reduced energies or wrong asymptotic behavior),
lower surface state, upper surface state, and upper
and lower surface state.

Because z has to be real there is a forbidden parameter
region h̃1 + h̃2

2−2h̃2 < 0 which is plotted gray in Figure 1.
Consequently surface states can exist outside only. On the
basis of the criteria in Table 1 and because of the solutions
(36, 37) we can construct the phase diagram with respect
to surface states dependent on the parameters h̃1 (shift
of center of gravity at first atom) and h̃2 (change of hop-
ping between first and second atom) shown in Figure 1.
No surface states occur for small center of gravity shifts
and small modification of hopping between first and sec-
ond atom. The area of no surface states is composed of
the grey “forbidden” region where no solutions exist and
the white plotted region where the existent solutions have
the wrong asymptotic behavior. This area ranges from
h̃1 = ±1, h̃2 = 1 over h̃1 = ± 1

2 , h̃2 = 0 to h̃1 = 0,
h̃2 = 1−

√
2. This region is limited by the solid line t = 1

joining the parameters for which upper surface states split
from bulk band at higher energies and the dashed line
t = −1 showing those for lower ones which split off at
lower energies. For center of gravity shifts larger than half
bandwidth (h̃1 >

1
2 ) the upper surface state appears. For

shifts in the opposite direction (h̃1 < − 1
2 ) the lower sur-

face state occurs. If the modification of hopping between
first and second atom becomes large enough h̃2 < 1−

√
2

both lower and upper surface state can exist. For h̃2 = 1
which means a complete decoupling of the first atom from
the chain (γ′ ≡ 0: Eqs. (16, 30)) we obtain one surface
state only if the center of gravity shift is larger than the
total bandwidth(|h̃1| > 1).
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The reduced energies t belonging to the surface states
are given by the solid lines and dashed lines, respectively.
The larger the modification of hopping h̃2 the larger the
energy distance from bulk band.

3.4 Spectral weight of surface states

We are interested in the spectral weight of surface states
i.e. |z| > 1. For this situation Rn(t) and Sn(t) intro-
duced in equation (24) represent only real continuous
functions without poles. We assume for the solutions of
equation (31) without restrictions

z1 > 0 > z2 ⇔ t1 < 0 < t2. (38)

The spectral weight of a surface state at the energy Ei is
denoted by α

(n)
i (i = 1, 2) where (n) indicates the chain

atom. The weights are found by:

α
(n)
i = lim

E→Ei
(E −Ei)Gnn(E)

(9)
= 2γ lim

t→ti

{
(t− ti)

(
1
λ
·Rn(t) + Sn(t)

)}
= 2γ Rn(ti) · lim

t→ti

t− ti
λ(t)

· (39)

We look for the ratio of spectral weights what is given by
the ratio of the functions Rm and Rn

α
(m)
i

α
(n)
i

=
Rm(ti)
Rn(ti)

· (40)

Thus all spectral weights can be written

α
(n)
i =

α
(1)
i

g0
11(ti)

Rn(ti), (41)

where Rn(ti) is known from equation (25).
We have now only to determine the spectral weights

of surface states for the first atom. This is done in Ap-
pendix D inserting equations (28, 25) into equation (41)

α
(1)
i = −2 lim

t→ti

t− ti
z(t) λ(z(t))

· (42)

The resulting spectral weights of surface states at the first
atom given in equations (D.4-D.11) are shown in Figure 2
for the upper case. The spectral weight is proportional to
the height as well as to the gray level of the plotted point.
White means no surface states are present. The regions
where upper surface states exist can be easily recognized.
The surface states at equal positions in energy are joined
by the black solid lines. We observe the larger the distance
in energy from the bulk band the larger the spectral weight
of a surface state becomes. If the energy of a surface state
is very close to the bulk band (|ti| ' 1) the spectral weight
of it tends to zero. In the limit of h̃1 → ±∞ the full spec-
tral weight is very soon represented by the upper peak and
lower peak, respectively. If we sufficiently strong increase
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Fig. 2. Spectral weight of the upper surface state dependent
of the center of gravity shift of first atom h̃1 and the change
in coupling between the first and second atom h̃2 represented
by the height as well as by the gray level of the current point.
The black lines give the reduced energy t of the surface peak.

the coupling between the first and second atom h̃2 → −∞
and fix h̃1 = 0 the spectral weight is symmetrically dis-
tributed between the peak below and above the bulk band
and we obtain 1

2 as limit value. In the limit of complete
decoupling of the first from the second atom (h̃2 → 1) we
have only an upper surface state if the center of gravity
shift is larger than the total bandwidth (h̃1 > 1). Its re-
duced energy is given by its shift h̃1 and it has the full
spectral weight 1. The spectral weights of lower surface
states are completely analogous. The phase diagram pre-
sented in Figure 1 can be understood as the projection of
the stack of the two 3-dimensional graphics of the upper
surface states and of the lower one (obtained by mirroring
on the h̃1 ≡ 0 plane).

3.5 Local density of states

The physical behavior is best monitored by the local den-
sity of states (LDOS) for a given atom n. The LDOS is
derived from the imaginary part of the diagonal Green
functions (Eqs. (11, 19))

ρ(0)
n = − 1

π
=G(0)

nn. (43)

In contrast to the infinitely extended linear chain the
LDOS ρ0

n depends on the site n in the chain. For surface
near atoms this dependence presented in Figure 3 is dras-
tic. The LDOS at the first atom (n = 1) is a semi-elliptic
one and has no zeros. By incrementing the distance from
surface by one atom one zero or one oscillation is added.
For large n →∞ the shape of LDOS approaches the one
dimensional tight-binding density of states.

Now we consider the modification of the LDOS of the
first site of the chain n = 1 in the case of a change of
center of gravity of the first atom expressed by h̃1 and in
the case of change of coupling between first and second
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Fig. 4. The local density of states of the first atom as a func-
tion of the reduced energy and for various shifts of the center of
gravity h̃1. The coupling between all atoms remains constant.

atom of the chain h̃2 (Eqs. (16, 30)). The general LDOS
is given by the imaginary part of Green function (19)

ρn = − 1
π
= Gnn. (44)

If we shift only the center of gravity of the first atom
towards higher reduced energies the shape of LDOS is
changed from the semi elliptic in an asymmetric one (see
Fig. 4). For strong enough shifts h̃1 >

1
2 (half bandwidth)

a surface state splits off which is plotted as a thick point.
The height of this point represents the spectral weight of
the surface peak starting from zero at h̃1 = 1

2 and ap-
proaching 1 for huge center of gravity shifts. The spectral
weight in the range of bulk energies t ∈ (−1, 1) shows the
opposite behavior.

Figure 5 offers the LDOS of the first atom in the case of
a coupling change between the first and the second atom.
If we reduce the coupling (h̃2 > 0) the LDOS narrows
and for h̃2 = 1 which means a complete decoupling of
the first atom from the rest of the chain it becomes the
atomic level. If we increase the coupling between these
layers (h̃2 < 0) spectral weight is moved symmetrically
from the center to the edges. The surface states occurring
for h̃2 < 1−

√
2 become more and more pronounced and

the spectral weight within the bulk band energy range
drops rapidly. For strong coupling of the first and second
atom the complete spectral weight is evenly distributed
between the both surface states.
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Fig. 6. LDOS of the first atom dependent on the reduced
energy and the coupling between the first and second atom for
a fixed shift of the center of gravity of 0.8 total bandwidths.

If we additionally add a center of gravity shift smaller
than the total bandwidth h̃1 = 0.8 < 1 we obtain the pic-
ture of the LDOS as function of coupling change between
first and second atom presented in Figure 6. The symme-
try is of course destroyed as a consequence of the shift
of the center of gravity. If a surface state is very close to
the bulk band edge the spectral weight on this edge is in-
creased. The upper surface state splits off from bulk band
for h̃2 < 0.37 and the lower one splits off for h̃2 < −0.89.
The larger the coupling becomes the farther the surface
state from bulk is located. Reducing the coupling between
the first and second atom narrows the LDOS of the first
atom. In the decoupling case (h̃2 = 1, γ′ = 0) the LDOS
is a single atomic level at the reduced energy given by
h̃1 = 0.8 inside the bulk band range and no surface state
is present. In the case of center of gravity shifts larger than
the total bandwidth the atomic level of the first atom lies
outside the bulk band of the chain. Consequently we have
for each coupling between first and second atom at least
one surface state. Such situation (h̃1 = 1.2) is given in
Figure 7. The atomic level at h̃1 plays the role of a surface
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Fig. 7. LDOS of the first atom dependent of the reduced en-
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center of gravity shift is 1.2 total bandwidths.

state. Within the bulk band range the LDOS vanishes. If
the coupling is strong enough (h̃2 < −1.10) an additional
lower surface state occurs.

Now we are interested in the propagation of the sur-
face states into the bulk. Figure 8 shows LDOS for the
first six layers. The lower surface states are visualized by
black points the upper ones by grey points. The spectral
weight is given by the height in the 3-dimensional plot.
Some general features (number of oscillations and zeros)
presented in Figure 3 can be found again. The position
in reduced energy of each surface state is fixed only the
weight varies from layer to layer. For these parameters
the maximum of the surface state weight is at the second
atom not at the first. Starting from the second atom the
weight of both surface state drops exponentially to zero in
agreement to our expectations. This can easily be seen in
the logarithmic plot in the inset. The lower surface state
which is closer to the bulk band drops down slower than
the upper one which is more far from bulk band. Now we
have an complete picture of our chain model.

4 Application to the s.c. (100) surface
of a semi-infinite crystal

In this section we investigate the surface states of a semi-
infinite s.c. (100) crystal in detail.

4.1 Modification of Hopping

The Hamiltonian of the semi-infinite extended s.c. (100)
crystal has the form (6)

H =
∑
αβk

Tαβ(k) =
∑
k

h(k), (45)

where Tαβ(k) are the elements of the Bloch matrix and
α, β = 1, 2, . . . are layer indices. If the Bloch matrix for
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Fig. 8. Layer dependent LDOS for n = 1, . . . , 6 in case of
slightly shifted center of gravity of the first atom and increased
hopping between first and second atom. The inset is a logarith-
mic plot of the spectral weights of surface states.

each wave vector k is of the form (15) (tridiagonal) then
our method derived in Section 3 can be applied and can
be interpreted as an ensemble of semi-infinite linear chains
for each k-point.

The presence of the surface manifests itself in a modifi-
cation of hopping at least within the surface layer and the
surface nearest layer. These modifications can be induced
for example by reconstruction or by correlation effects [17].
This can be included in the mapping onto the semi-infinite
linear chain (α(k), α′(k), γ(k), γ′(k)).

We investigate the surface in the tight binding approx-
imation. In our special case the elements of the Bloch ma-
trix are real. The site indices in the directions parallel
to the surface are labeled by a Latin letter and the in-
dex counting the layer parallel to the surface is labeled by
a Greek letter. The tight binding approximation can be
written as

Tαβij = δαβi,j±∆T
αα + δα,β±1

ij Tαβ (46)

where ∆ = (0, 1), (0, 1̄), (1, 0), (1̄, 0). Tαβ is the hopping
between the layers α and β = α ± 1 and Tαα within the
layer α. We describe these influences by change of the hop-
ping within the first layer T 11 = ε‖T and the change of the
hopping between the first and second layer by T 12 = ε⊥T .
This variation of hopping within the surface layer and be-
tween the surface layer and the surface nearest layer was
part of numerical calculations performed on a local mo-
ment film in our previous paper [1]. We use the dispersions
defined by equations (4, 5) and given in Appendix A,

γ‖(k) = 2 (cos(kxa) + cos(kya)) , (47)
γ⊥(k) = 1. (48)

Thus the diagonal elements of the Hamiltonian and of the
Bloch matrix are given by

h11
k = T 11

k = ε‖Tγ‖(k), hααk = Tααk = Tγ‖(k), (49)
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Fig. 9. Spectral density of surface layer with ε⊥ = 1, ε‖ = 0.5

as a function of the wave vector k for the ΓM direction.

and the first upper and lower diagonal elements by

h12
k = h21

k = T 12
k = T 21

k = ε⊥Tγ⊥(k), (50)

hα+1,α
k = hα,α+1

k = Tα+1,α
k = Tα,α+1

k = Tγ⊥(k).

In case of the infinite s.c. (100) surface the parameters
α(k), α′(k), γ(k), and γ′(k) are k-dependent via the dis-
persion equations (47, 48),

α′(k) = ε‖Tγ‖(k), (51)
α(k) = Tγ‖(k),

γ′(k) = −ε⊥Tγ⊥(k), (52)
γ(k) = −Tγ⊥(k).

4.2 Spectral density

We choose T = −0.1 eV in order to compare with our
results in reference [1]. The next four Figures 9-12 show
the spectral density of the surface layer for wave vectors
of first Brillouin zone from Γ to M. The surface states are
represented by a black line with a point on the top. Its
height gives the spectral weight. The spectral density for
each wave vector is normalized to one. The solid line con-
necting the surface states gives the k-dependent spectral
weight. The dashed lines limit the range of bulk bands in
the two dimensional Brillouin zone.

First Figure 9 we let the hopping between the first and
second layer unchanged (ε⊥ ≡ 1). If we reduce the hopping
within the surface layer to 50% one surface state splits
off from the inner band edges starting from the Γ and M
point respectively. Around the center between Γ and M no
surface state can be found. The behavior at the M-point
coincides with Figure 4 in our previous work [1]. The layer
dependence of the spectral density for each wave vector k
can be obtained by a plot like Figure 8 starting from the
matching parameters (Eqs. (51, 52)) for the atomic chain.
Regarding the k dependent spectral density we expect the
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Fig. 10. The same as in Figure 9 but for ε⊥ = 1, ε‖ = 1.5.
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Fig. 11. The same as in Figure 9 but for ε‖ = 1, ε⊥ = 2.5.

corresponding local density of states (LDOS) of the first
layer to be narrowed in this case because spectral weight
is transfered to the inner side of dispersion curve.

Figure 10 represents the situation for inter layer hop-
ping increased by 50%. The surface state is now on the
outer side of the band. A broadening in the (LDOS) can
be expected.

If we leave the hopping within the surface layer con-
stant (ε‖ = 1) and modify the hopping between the surface
nearest layer by the factor ε⊥ = 2.5 we get Figure 11. Be-
cause of equation (48) there is no variation only a shift of
the center of gravity of spectral density. The shape at the
M-point the same as Figure 5 in reference [1].

If we vary both the hopping within the surface layer
by ε‖ = 1.5 and the hopping between it and the surface
nearest layer by ε⊥ = 2.0 we get a situation plotted in
Figure 12. Here exists for k nearby Γ or M one surface
state with large spectral weight at the outer side of the
band and there are two surface states in the k-region from
(0.3, 0.3) to (0.6, 0.6).
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Fig. 12. The same as in Figure 9 but for ε‖ = 1.5, ε⊥ = 1.8.

Figure 13 shows for three values of hopping between
the surface and surface nearest layer the spectral weight
of the surface states as function of the wave vector of the
two dimensional Brillouin zone between Γ and M and as a
function of the modification of hopping within the surface
layer ε‖. The situation for any given pair of ε‖ and ε⊥ is
given by the cut parallel to the k-axis.

In the first graph the hopping between the layers re-
mains unchanged (ε⊥ = 1). The cut for ε‖ ∈ (3

4 ,
5
4 ) has

no intersections with the four dark or light gray shaded
faces no surface states can occur. For larger modifications
of hopping within the surface layer the regions in the 2-
dimensional Brillouin where surface states exist become
larger and the surface states are more pronounced. For
ε‖ <

3
4 we have near the Γ point surface states above

the bulk band (dark gray shaded face) and we have near
the M point of the two dimensional Brillouin zone surface
states below the band (light gray shaded face). This is the
situation plotted in Figure 9. For ε‖ > 5

4 we observe an
analogous behavior except that the surface states near the
Γ point are lower in energy than the band and those near
the M point are higher in energy with respect to the band.
(Compare with Fig. 10.)

In the second graph ε⊥ = 1.41 is chosen just be-
fore the limiting value of ε⊥ =

√
2 which corresponds to

h̃2 = 1 −
√

2 for the linear chain. The four faces repre-
senting surface states below and above the bulk band are
extended. For the limiting value ε⊥ =

√
2 the four faces

merge and on each point in the k, ε‖ parameter space ex-
act one surface state exists except the lines ε⊥ ≡ 1 and
k ≡ ( π2a ,

π
2a ) where the spectral weight vanishes. For larger

values of ε⊥ at least one surface state exists at each k
point of the 2-dimensional Brillouin zone. The conditions
for the existence of surface states apply to the spectra in
our previous work [1].

The last graph ε⊥ = 1.8 presents the plot for stronger
modification of the hopping between the first and the
second layer than the limit value ε⊥ >

√
2. In this case the

four faces cross each other. For values of 0.7 . ε‖ . 1.3
there are two intersections at the whole Brillouin therefore
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Fig. 13. Spectral weight of surface states at the surface layer
for three values of the modified hopping between the first and
second layer ε⊥ = 1, 1.41, 1.8 dependent on the 2-dimensional
wave vector k ∈ (Γ,M) and the modification of hopping within
the surface layer ε‖ ∈ (0, 2). The dark gray shaded faces show
surface states with an energy above the band and the light gray
shaded ones show surface states below the band. The solid lines
join points with equal spectral weight of surface state. They are
spaced with 0.2 with respect to the spectral weight.

exist two surface states per k point at the whole Brillouin
zone and for larger changes of ε‖ . 0.7 or ε‖ & 1.3 only
one surface state occur near the Γ or near the M point
and two surface states exists fore each k in between (e.g.
Fig. 12).

5 Influence of spin exchange correlation

Now we include spin exchange correlation in our model.
We investigate the surface states in a correlated s.c. (100)
local-moment film as presented in reference [1]. We
restudy the special case of a single electron in an empty
conduction band and zero temperature which can be
solved exactly in the framework of the s−f model
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(or ferromagnetic Kondo model). The Hamiltonian which
can be written as:

H =
∑
ijαβ

(
Tαβij − µδ

αβ
ij

)
c+iασcjβσ − J

∑
iα

Siασiα (53)

describes with the first part the itinerant conduction elec-
trons (Tαβij are the elements of the hopping matrix, µ is the
chemical potential) and describes with the second part the
interaction of the electrons and localized spins represented
by Siα. It is assumed that the system of the localized spins
is completely ferromagnetic aligned at zero temperature.
c+iασ and cjβσ are, respectively, the creation and annihila-
tion operators of an electron with spin σ (σ =↑, ↓). J is
the s−f exchange constant and σiα is the Pauli spin op-
erator of the s-band electrons. The solution for the Green
function of the local moment film is given by

Gk,σ = }D−1
k,σ, (54)

where

(Dk,σ)αβ = −Tαβk + δαβ(E +
1
2
zσJ}S − δ↓σCα), (55)

and z↑ = 1, z↓ = −1 correspond to the direction of
the spin of the conduction band electron and characterize
the direction of the shift of the spectrum dependent on the
s−f exchange coupling constant J . The layer dependent
term Cα only occurs in the spin-↓ spectrum.

Spin-↑-spectrum

In case of the spin-↑-electron the correlation switched on
by J only shifts the spectrum rigidly by the constant en-
ergy ∆E = − 1

2J}S towards lower energies because the
electron can not exchange its spin with the at zero tem-
perature perfectly aligned local moment system. Conse-
quently our analytical model presented in 4.1 and 4.2 is
the exact solution for this case if we substitute α, α′ by
α, α′ +∆E.

Spin-↓-spectrum

The term

Cα =
1
2J

2}2SBα

1− 1
2J}Bα

(56)

where

Bα =
1
N

∑
k

(Dk↑)
αα (57)

is a consequence of the possibility for a spin-↓ electron to
exchange its spin with the local moment system. For small
values of the exchange coupling J a deformation of the free
spin-↓ spectral density results and the quasiparticle gets a
finite lifetime. For stronger J the spectrum splits into two

parts belonging to two different mechanisms of the spin
exchange between the excited spin-↓ electron and the sys-
tem of the localized spins. One of these excitations can be
commented on as the polarization of the direct spin sur-
roundings of the electron due to a repeated emission and
reabsorption of magnons. This results in a polaron-like
quasiparticle which we call in the following the “magnetic
polaron”. The magnetic polaron is located at higher en-
ergies of the spectrum. The second possible excitation is
the emission of a magnon by the original spin-↓ electron
without reabsorption, but necessarily with a spin flip of
the electron. The result is a broad low-energy “scattering
part” in the spectral density. The spin-flip process is only
possible if there are spin-↑ states within reach. If we ne-
glect the tiny magnon energies the scattering part occupies
exactly the same energy range as the spin-↑ quasiparticle
density of states. For details of the discussion see [1,18].
For qualitative understanding of surface states in the local
moment film it is sufficient to assume the spin exchange
correlation expressed by Cα(E) to be layer independent.
This is reasonable because the values for J are small and
the Bα(E) entering into is obtained by summation over
the two dimensional Brillouin zone of the spin-↑-electron
Green function. The small changes in the shape of those
quantities within the layers closest to the surface are omit-
ted. That means the effect of a narrowing for ε‖ < 1 and
of the broadening for ε‖ > 1 ( ε⊥ ≡ 1) with respect to
the situation in the bulk which drops down exponentially
from the surface to the bulk is not present. The calcula-
tion presented here are performed using Cα = C∞. Using
the formula (5.52) in [19] we get

B∞(E) =
1

2π2|T |

π∫
0

dφ t K(t) (58)

where t = 4|T |/(E −∆E − 2|T | cosφ) and K is the com-
plete elliptic integral of the first kind. It is also possible to
extend it to C1 6= Cα>1 = C∞ without any change in our
chain model to include in a first step the layer dependence
of the scattering part in the spectra. Figure 14 shows the
results of this calculation. Fore the comparison the results
of the numerical calculation for a thick local moment film
from [1] (density plot Fig. 9) are presented in Figure 15.
The local spin-↓ density for the first, the second and a bulk
layer is plotted for the s−f exchange coupling J = 0.3. In
the spectra of the first and second layer we observe near
the Γ point and near the M point of the 2-dimensional
Brillouin zone the splitting off of a surface state from bulk
band (layer ∞). The features observed for the case with-
out correlation (J = 0) are rendered in the shape of the
“magnetic polaron” part of the spectrum. For reduction
of the hopping within the surface layer by ε‖ = 0.4 < 1
the split off happens at the inner dispersion band side
(compare Fig. 9) and for enhanced hopping ε‖ = 1.6 > 1
the split off occurs on the outer side (compare Fig. 10).
As a consequence the local density of states of the polaron
band is narrowed for ε‖ < 1 and broadened for ε‖ > 1. The
nearer to the band in energy the more pronounced is the
scattering part. The largest scattering part is observable
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Fig. 14. Local spin-↓ spectral density of the first two layers and the bulk layer for the sf-exchange coupling constant J = 0.3
and modified hopping within the first layer (ε‖ = 0.4, 1.6). The hopping between the layers remains constant.
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spin-↓ spectral density of the α = 1, 2, 25 layer of a 50 layer film
as a function of energy and k ∈ (Γ,M) for two s−f exchange
coupling constants J = 0, 0.3 and modified hopping within
the first layer (ε‖ = 0.4, 1.6). The hopping between all layers
remains constant.

in the spectrum of the surface layer at the Γ point in case
of a surface state below the band (ε‖ = 1.6). The shape of
spectra and the mentioned features are identical with the
numerical results for a 50 layer local moment film given
in the density plot of Figure 15. The replacement of the
layer dependent term Cα by its bulk expression has no
visible consequences but in principle the scattering part
should be a little bit narrowed for ε‖ < 1 and a little bit
broadened for ε‖ > 1.

6 Conclusions

We have investigated the Green function of the semi-
infinite linear chain in tight binding approximation.
The problem of modification of the center of gravity of
the band from the first atom and the coupling between
the first and second atom is solved analytically exactly.
One surface state occurs for center of gravity shifts larger
than half bandwidth and two surface states are present if
the coupling between first and second atom is enhanced by
a factor larger than

√
2. A phase diagram is constructed.

The spectral weight of surface states is evaluated analyt-
ically and drops down exponentially with distance from
the surface to the bulk.

The obtained model is applicable to all surfaces which
allow the k-dependent mapping which is possible within
the tight binding approximation.

This kind of mapping is done for the s.c. (100) surface.
The conditions for the existence of surface states men-
tioned in reference [1] have been proved. For sufficiently
modified hopping within the surface layer by more than
25% one surface state splits off from bulk band. The exis-
tence of surface states for a given change of the hopping
within the surface layer is dependent on the wave vector
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of the two dimensional Brillouin zone and starts at the
Γ and the M point. If the hopping between surface layer
and the surface nearest layer is enhanced by more than√

2 two surface states show up, one below and one above
the bulk band.

We included correlation in a simplified manner e.g. we
assumed a layer independent self energy which has to be
added to each diagonal element of the Hamiltonian of our
chain model. In principle it is possible to introduce for the
first layer a different self energy, too. But it is not neces-
sary for getting a beautiful agreement with the results of
the numerical evaluation for thick films [1]. The general
structure of the spin-↑ spectrum is enriched by correlation
(scattering part) also visible in the spin-↓ spectrum in the
polaron part. In our calculations the energy range occu-
pied by the scattering part of the spectrum is constant.
For the exact result (using layer dependent self energy)
one should expect a broadening of this range if a spin-↑
surface state splits off on the outer side of the dispersion
curve. In this case there are surface states not only in the
“magnetic polaron” part (δ-peak) but also in the scatter-
ing part (continuous).

This approach helps to basically understand the con-
ditions for the appearance and the behavior of surface
states and will be completed by studies on the tempera-
ture dependent behavior of surface states on ferromagnetic
semiconductors [2].

This work was supported by the Deutsche Forschungsgemein-
schaft within the Sonderforschungsbereich 290 (“Metallische
dünne Filme: Struktur, Magnetismus, und elektronische Eigen-
schaften”). One of us (R.S.) gratefully acknowledges the sup-
port by the Studienstiftung des deutschen Volkes.

Appendix A: Dispersion for different surface
geometries

The dispersion is calculated using equations (4, 5).

s.c. (100)

γ‖(k) = 2 (cos(kxa) + cos(kya))

γ⊥(k) = 1 (A.1)

s.c. (110)

γ‖(k) = 2 cos(kxa)

γ⊥(k) = 2 cos(
√

2kya) (A.2)

s.c. (111)

γ‖(k) = 0

γ−⊥(k) = ei
√

2
3kxa + e−i

√
1
6kxa · 2 cos

(√
2

2
kya

)
(A.3)

b.c.c. (100)

γ‖(k) = 0

γ⊥(k) = 2 cos[(kx + ky)
a

2
] + 2 cos[(kx − ky)

a

2
] (A.4)

b.c.c. (110)

γ‖(k) = 2 cos(kx a2 + ky
a√
2
) + 2 cos(kx a2 − ky

a√
2
)

γ⊥(k) = 2 cos(kx
a

2
) (A.5)

f.c.c. (100)

γ‖(k) = 2[cos((kx + ky)
a

2
) + cos((kx − ky)

a

2
)]

γ⊥(k) = 2(cos[kx
a

2
] + cos[ky

a

2
]) (A.6)

f.c.c. (111)

γ‖(k) = 2[cos(
√

3
8kx+
√

1
8ky)a) + cos(

√
3
8 kx−
√

1
8ky)a)

+ cos(
√

1
2kya)]

γ−⊥(k) = ei
√

1
6kxa + e−i

√
1
24kxa2 cos

(√
2

4
kya

)
(A.7)

Appendix B: Analytical representation
of Green function

Using equation (8) the Green function is given by

G0(E) = −}
γ


−2t −1 0 · · ·

−1 −2t −1
. . .

0 −1 −2t
. . .

...
. . . . . . . . .



−1

. (B.1)

Equation (B.1) reads

G0(E) = −}
γ

M−1 (B.2)

where M is given by

M =


2 cos θ −1 0 · · ·

−1 2 cos θ −1
. . .

0 −1 2 cos θ
. . .

...
. . . . . . . . .

 . (B.3)

The analytic solution of the inverse matrix M−1(
M−1

)
kl

= mkl =
(

ei(k+l)θ − ei|k−l|θ
)/

(2i sin θ) (B.4)

is given by Wax [20].
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Appendix C: Inversion of matrix A

The matrix inversion is achieved by the simple rule

(
A−1

)
ij

=
detAji

detA
, (C.1)

where Aji is the adjunct matrix to A obtained by delet-
ing the j-th row and i-th column. The inverse matrix is
given by

A−1 =
1

detA



a22 −a12 0 · · ·

−a21 a11 0 · · ·∣∣∣a21 a31
a22 a32

∣∣∣ −∣∣∣a11 a31
a12 a32

∣∣∣ detA
. . .∣∣∣a21 a41

a22 a42

∣∣∣ −∣∣∣a11 a41
a12 a42

∣∣∣ 0
. . .

...
...

...
. . .


, (C.2)

where aij = (A)ij and

detA = λ =

∣∣∣∣∣ a11 a21

a12 a22

∣∣∣∣∣ . (C.3)

Appendix D: Calculation of spectral weights

The inverse of equation (29) for z ∈ R is given by

z < −1 z(t) = −t−
√
t2 − 1

−1 ≤ z < 0 z(t) = −t+
√
t2 − 1

}
t > 0,

0 ≤ z < 1 z(t) = −t−
√
t2 − 1

z > 1 z(t) = −t+
√
t2 − 1

}
t < 0.

(D.1)

The dependence z(t) given in equation (D.1) is to use for
evaluate the correct limit. We make the differentiation:

1. h̃2 = 0
If |h̃1| > 1

2 , the only surface state is given by equa-
tion (36)

z1(2) = −2h̃1. (D.2)

The denominator (31) simplifies to

λ(z) = z−1(z + 2h̃1). (D.3)

(a) h̃1 < − 1
2 , one surface state below bulk band (z1 >

1, t1 < −1)
If we pay attention to equation (D.1) we have to
use z = −t+

√
t2 − 1 and z1 = −t1 +

√
t11 − 1. The

result is

α
(1)
1 = −2

√
t21 − 1

t1 −
√
t21 − 1

· (D.4)

(b) h̃1 >
1
2 , one surface state above bulk band (z2 <

−1, t2 > 1)
In an analogous way we obtain

α
(1)
2 = −2

√
t22 − 1

−t2 −
√
t22 − 1

· (D.5)

2. h̃2 < 0
There are two solutions of equation (31) (z1 > 0 > z2)
λ can be written as

λ(z) = z−2 (z − z1)(z − z2) (D.6)

(a) |z1,2| > 0, two surface states one above one below
bulk band

α
(1)
1 =

2
√
t21 − 1

t2 +
√
t22 − 1− t1 +

√
t21 − 1

α
(1)
2 =

2
√
t22 − 1

t2 +
√
t22 − 1− t1 +

√
t21 − 1

(D.7)

(b) 0 < z1 ≤ 1 and z2 < −1, one surface state above
bulk band

α
(1)
2 =

2
√
t22 − 1

t2 +
√
t22 − 1− t1 −

√
t21 − 1

(D.8)

(c) z1 > 1 and −1 ≤ z2 < 0, one surface state below
bulk band

α
(1)
1 =

2
√
t21 − 1

t2 −
√
t22 − 1− t1 +

√
t21 − 1

· (D.9)

3. 1 ≥ h̃2 > 0
There are two solutions possible if the square root in
equation (31) is positive. Both have the same sign.
The larger in absolute value gives a surface state if
|h̃1| > 1

2 + h̃2 − 1
2 h̃

2
2.

(a) z2 < −1 < z1 < 0

α
(1)
2 =

2
√
t22 − 1

−t1 +
√
t21 − 1 + t2 +

√
t22 − 1

(D.10)

(b) 0 < z2 < 1 < z1

α
(1)
1 =

2
√
t21 − 1

−t1 +
√
t21 − 1 + t2 +

√
t22 − 1

· (D.11)
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